1040106 - C1

Class - X

MATHEMATICS

Time: 3 to 3½ hours Maximum Marks: 80 समय : 3 से 31/2 घण्टे

अधिकतम अंक : 80

Total No. of Pages: 13

कुल पृष्ठों की संख्या: 13

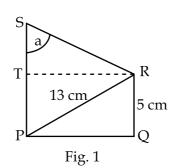
General Instructions:

1. All questions are compulsory.

- 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 questions of 1 mark each, Section - B comprises of 8 questions of 2 marks each, Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each.
- 3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is **not** permitted.
- 6. An additional 15 minutes time has been allotted to read this question paper only.

सामान्य निर्देश:

- सभी प्रश्न अनिवार्य हैं। 1.
- इस प्रश्न-पत्र में 34 प्रश्न हैं, जो चार खण्डों में अ, ब, स व द में विभाजित है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक 2 प्रश्न 1 अंक का है. खण्ड - ब में 8 प्रश्न हैं और प्रत्येक प्रश्न 2 अंकों के हैं. खण्ड - स में 10 प्रश्न हैं और प्रत्येक प्रश्न 3 अंकों का है. खण्ड - द में 6 प्रश्न हैं और प्रत्येक प्रश्न 4 अंकों का है।
- प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें। 3.
- इसमें कोई भी सर्वोपरि विकल्प नहीं है. लेकिन आंतरिक विकल्प 1 प्रश्न 2 अंकों में. 3 प्रश्न 3 अंकों में और 2 प्रश्न 4. 4 अंकों में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- कैलकुलेटर का प्रयोग वर्जित है। 5.
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। इस अवधि के दौरान छात्र केवल प्रश्न-पत्र को पढ़ेंगे 6. और वे उत्तर-प्स्तिका पर कोई उत्तर नहीं लिखेंगे।

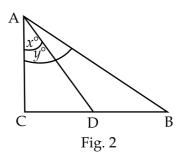

1 P.T.O.

SECTION - A

Question numbers 1 to 10 are of 1 mark each.

1.	The	decimal expansio	n of t	he rational nu		$\frac{11}{3.5^2}$ will termina	te after	::
	(A)	one decimal pla	ce	(B) two	decimal places		
	(C)	three decimal pl	lace	(D) moi	re than 3 decima	l places	3
2.	If the	e HCF of 65 and 1	117 is	expressible in	the form	n 65 m – 117, the	n the v	alue of m is :
	(A)	4	(B)	2	(C)	3	(D)	1
3.	The	degree of the pol	ynom	ial $(x+1) (x^2 -$	$-x-x^{4}+$	1) is:		
	(A)	2	(B)	3	(C)	4	(D)	5
4.	If a _]	pair of linear equa	ations	is consistent,	then the	lines will be :		
	(A)	parallal		(B) a	lways co	oincident		
	(C)	intersecting or c	coincic	lent (D) a	lways ir	ntersecting.		
5.		ata has 25 observa nedian ?	ations	(arranged in	descend	ing order). Whi	ch obse	ervation represents
	(A)	12 th	(B)	13 th	(C)	14 th	(D)	15 th
6.	If co	$\sec\theta = \frac{3}{2}$, then 2(o	cosec ²	$\theta + \cot^2 \theta$) is:				
	(A)	3	(B)	7	(C)	9	(D)	5
7.	If sir	$n\theta + \sin^2\theta = 1$, the	value	of $(\cos^2\theta + \cos^2\theta)$	$(s^4\theta)$ is :			
	(A)	3	(B)	2	(C)	1	(D)	0
8.	If ΔA	ABC~ΔDEF, BC=	=4 cm	, EF=5 cm ar	nd ar (ΔA	ABC) = 80 cm ² , th	e ar (Δ	DEF) is :
	(A)	100 cm^2	(B)	125 cm^2	(C)	150 cm^2	(D)	200 cm^2

9. In fig. 1, if PS = 14 cm, the value of tan a is equal to :


(A) $\frac{4}{3}$

(B)
$$\frac{14}{3}$$

(C)
$$\frac{5}{3}$$

(D)
$$\frac{13}{3}$$

10. In fig. 2, if D is mid - point of BC, the value of $\frac{\cot y^{\circ}}{\cot x^{\circ}}$ is :

(A) 2

(B)
$$\frac{1}{4}$$

(C)
$$\frac{1}{3}$$

(D)
$$\frac{1}{2}$$

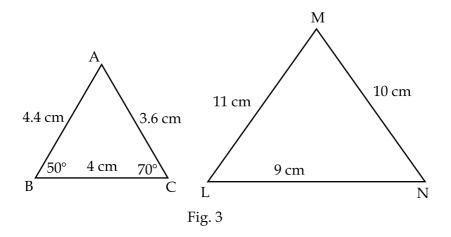
SECTION - B

Question numbers 11 to 18 carry 2 marks each.

- 11. Find the H.C.F of 455 and 84 using division algorithm.
- **12.** Solve: 47x + 31y = 63, 31x + 47y = 15.

OR

$$\frac{3}{x} - 5y + 1 = 0, \quad \frac{2}{x} - y + 3 = 0$$


- **13.** α , β are the roots of the quadratic polynomial $p(x) = x^2 (k 6) x + (2k + 1)$. Find the value of k, if $\alpha + \beta = \alpha\beta$.
- **14.** If $\tan \theta = \frac{1}{\sqrt{7}}$, find the value of $\frac{\csc^2 \theta + \sec^2 \theta}{\csc^2 \theta \sec^2 \theta}$.
- 15. Write the following distribution as less than type cumulative frequency distribution:

C. I.	140 -145	145 -150	150 - 155	155 - 160	160 -165	165 -170
Frequency	10	8	20	12	6	4

16. Find the modal class and the median class for the following distribution :

C. I	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	6	10	12	8	7

- 17. If the areas of two similar triangles are equal, prove that they are congruent.
- **18.** From the given figure, find \angle MLN.

SECTION - C

Question numbers 19 to 28 carry 3 marks each.

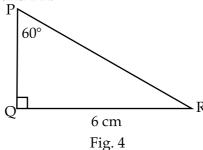
19. Show that $5 - \sqrt{3}$ is irrational.

 \mathbf{OR}

Show that $\sqrt{2} + \sqrt{3}$ is irrational.

- **20.** Check whether 6ⁿ can end with the digit zero for any natural number n.
- 21. If α , β are the two zeroes of the polynomial 25 p^2-15 p+2, find a quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$.
- **22.** If A,B,C are interior angles of \triangle ABC, show that :

$$\csc^2\left(\frac{B+C}{2}\right) - \tan^2\frac{A}{2} = 1$$

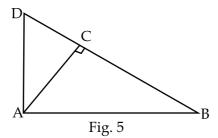

OR

$$\sec^2\theta + \cot^2(90 - \theta) = 2 \csc^2(90 - \theta) - 1.$$

23. The sum of digits of a two digit number is 11. The number obtained by interchanging the digits of the given number exceeds that number by 63. Find the number.

The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs 105 and for a journey of 15 km, the charge paid Rs. 155. What are the fixed charges and the charge per km?

24. In fig (4), \triangle PQR, right angled at Q, QR = 6 cm, \angle QPR = 60°. Find the length of PQ and PR.


25. The mean of the following frequency distribution is 52. Find the missing frequency.

		-	-				-
C. I.	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	5	3	4	f	2	6	13

26. Find the mode of the following frequency distribution :

C. I.	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Frequency	5	8	15	20	14	8	5

27. In fig. 5, ABD is a triangle in which \angle DAB = 90° and AC \perp BD. Prove that AD² = BD × CD.

28. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

SECTION - D

Question numbers 29 to 34 carry 4 marks each.

29. Solve the following system of equations graphically and find the vertices of the triangle bounded by these lines and the *x*-axis.

$$2x-3y-4=0$$
, $x-y-1=0$.

30. Draw 'more than ogive' for the following frequency distribution and hence obtain the median

C. I.	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
Frequency	2	12	2	4	3	4	3

31. Prove the following :

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

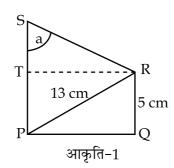
OR

Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

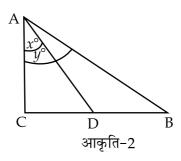
32. Find all the zeroes of the polynomial $x^4 + x^3 - 9x^2 - 3x + 18$, if two of its zeroes are $\sqrt{3}$, $-\sqrt{3}$.

- **33.** Prove that $\frac{\cos\theta \sin\theta + 1}{\cos\theta + \sin\theta 1} = \csc\theta + \cot\theta$.
- **34.** If $x = r \sin A \cos C$, $y = r \sin A \sin C$, $z = r \cos A$, prove that $r^2 = x^2 + y^2 + z^2$.

OR


Prove that $\sqrt{\frac{1 + \cos A}{1 - \cos A}} = \operatorname{cosec} A + \cot A$.

- o 0 o -


प्रश्न संख्या 1 से 10 तक प्रत्येक प्रश्न 1 अंक का है।

1.	परिमे	य संख्या <u>11</u> व संख्या <u>2³.5²</u> का द	शमलव	व विस्तार सांत	होगा :				
	(A)	एक दशमलव के बा	द।		(B)	दो दश	ामलव के बाद।		
	(C)	तीन दशमलव के बा	द।		(D)	तीन वे	के अधिक दशमलव वे	_{त्र} बाद।	
2.	यदि (65 तथा 117 का HCF	65 m	117 के रूप	में है त	तो m क	न मान है :		
	(A)	4	(B)	2		(C)	3	(D)	1
3.	बहुपर	$\xi(x+1)(x^2-x-x^2)$	¹ +1)	की घात होगी	:				
	(A)	2	(B)	3		(C)	4	(D)	5
4.	यदि ३	रेखिक समीकरण युग्म	संगत ह	हो तो रेखायें हों	गी :				
	(A)	समानान्तर			(B)	हमेशा	उभयनिष्ट		
	(C)	प्रतिच्छेदी उभयनिष्ट			(D)	हमेशा	प्रतिच्छेदी		
5.	25 अ	गॅंकड़ों को घटते हुये क्र	म में र	खा गया। कौन	सा अं	ाँकड़ा म	गाध्यिका को दर्शाएगा ?)	
	(A)	12 वाँ	(B)	13 ਕਾੱ		(C)	14 ਕਾੱ	(D)	15 वाँ
6.	यदि त	$\csc\theta = \frac{3}{2}$, तब 2(c	osec ² (θ+cot ² θ) है :	:				
	(A)	3	(B)	7		(C)	9	(D)	5
7.	यदि s	$\sin\theta + \sin^2\theta = 1$ तो ($\cos^2\theta$	+ cos ⁴ θ) का ग	मान होग	π:			
	(A)	3	(B)	2		(C)	1	(D)	0
8.	यदि 🛭	ΔABC~ΔDEF, BC	=4 से	.मी., EF=5 र	प्ते.मी. १	क्षेत्रफल	(ΔABC) = 80 से.म ं	ो. ² तब	क्षेत्रफल (ΔDEF) है :
	(A)	100 से.मी. ²	(B)	125 से.मी. ²		(C)	150 से.मी. ²	(D)	200 से.मी. ²

9. आकृति 1 में, यदि PS = 14 से.मी. है तो tan a का मान होगा :

- (A) $\frac{4}{3}$
- (B) $\frac{14}{3}$
- (C) $\frac{5}{3}$
- (D) $\frac{13}{3}$
- 10. आकृति 2 में, D बिन्दु BC का मध्य बिन्दु है $\frac{\cot y^{o}}{\cot x^{o}}$ का मान होगा :

- (A) 2
- (B) $\frac{1}{4}$
- (C) $\frac{1}{3}$
- (D) $\frac{1}{2}$

खण्ड-ब

प्रश्न संख्या 11 से 18 तक प्रत्येक प्रश्न 2 अंक का है।

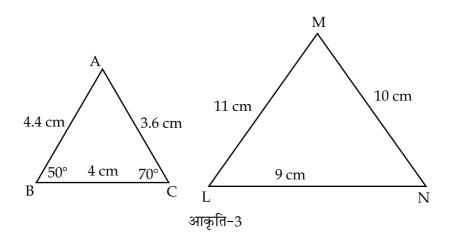
- 11. 455 तथा 84 का HCF (म.स.प.) विभाजन एल्गोरिथम द्वारा ज्ञात कीजिए।
- **12.** हल करो 47x + 31y = 63, 31x + 47y = 15.

अथवा

$$\frac{3}{x} - 5y + 1 = 0$$
, $\frac{2}{x} - y + 3 = 0$

13. द्विघात बहुपद $p(x) = x^2 - (k - 6) x + (2k + 1)$ के शून्यक α , β हैं, तो k का मान ज्ञात करें यदि $\alpha + \beta = \alpha\beta$ हो।

14. यदि
$$\tan\theta = \frac{1}{\sqrt{7}}$$
 तो मान ज्ञात करो $\frac{\csc^2\theta + \sec^2\theta}{\csc^2\theta - \sec^2\theta}$.


15. निम्नलिखित बारंबारता बंटन का 'से कम प्रकार का' संचयी बारंबारता बंटन बनाइये।

	वर्ग अन्तराल	140 -145	145 -150	150 - 155	155 - 160	160 -165	165 -170
Ī	बारंबारता	10	8	20	12	6	4

16. निम्नलिखित बारंबारता बंटन का बहुलक वर्ग तथा माध्यिका वर्ग ज्ञात कीजिए।

वर्ग अन्तराल	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
बारंबारता	6	10	12	8	7

- 17. यदि दो समरूप त्रिभुजों का क्षेत्रफल बराबर हो तो सिद्ध कीजिए कि वे सर्वांगसम होंगें।
- **18.** आकृति 3 देखकर \angle MLN ज्ञात कीजिये।

खण्ड-स

प्रश्न संख्या 19 से 28 तक प्रत्येक प्रश्न 3 अंकों का है।

19. दर्शाइये कि $5-\sqrt{3}$ एक अपरिमेय संख्या है।

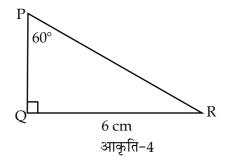
या

दर्शाइये कि $\sqrt{2} + \sqrt{3}$ एक अपरिमेय संख्या है।

- **20.** जाँच कीजिए कि 6^n का विस्तार शून्य में समाप्त होगा जहाँ n एक प्राकृत संख्या है।
- 21. यदि बहुपद $25 p^2 15 p + 2$ के शून्यक α , β हों तो वह द्विघात बहुपद ज्ञात कीजिए जिसके शून्यक $\frac{1}{2\alpha}$ तथा $\frac{1}{2\beta}$ हों।
- 22. ΔABC में A, B, C अन्तः कोण है। दर्शाइये कि :

$$\csc^2\left(\frac{B+C}{2}\right) - \tan^2\frac{A}{2} = 1$$

या

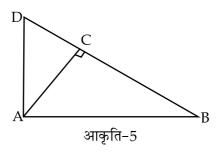

 $\sec^2\theta + \cot^2(90 - \theta) = 2 \csc^2(90 - \theta) - 1.$

23. 2 अंकों से बनी संख्या के अंकों का योग 11 है। संख्या के अंकों को पलटने से बनी हुई संख्या पहली संख्या से 63 अधिक है। संख्या ज्ञात करो।

या

एक नगर में टैक्सी के भाड़े में एक नियत भाड़े के अतिरिक्त चली गई दूरी पर भाड़ा सिम्मिलित किया जाता है। 10 कि.मी. दूरी के लिये भाड़ा 105 रु. है तथा 15 कि.मी. के लिये भाड़ा 155 रु. है। नियत भाड़ा तथा प्रति कि.मी. भाड़ा क्या है?

24. आकृति 4 में, Δ PQR में \angle Q समकोण है। QR = 6 से.मी. \angle QPR = 60° तो PQ तथा PR की लम्बाई ज्ञात करो।


25. निम्न बारंबारता सारणी का माध्य 52 है, तो अज्ञात बारंबारता ज्ञात कीजिये।

वर्ग अन्तराल	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
बारंबारता	5	3	4	f	2	6	13

26. निम्न बारंबारता बंटन का बहुलक ज्ञात करो।

वर्ग अन्तराल	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
बारंबारता	5	8	15	20	14	8	5

27. आकृति 5 में, $\triangle ABD$ में, $\angle DAB = 90^{\circ}$ है, तथा $AC \perp BD$ सिद्ध कीजिए : $AD^2 = BD \times CD$.

28. सिद्ध कीजिए कि किसी समचतुर्भुज के भुजा पर बने वर्गों का योग उसके विकर्ण पर बने हुये वर्गों के योग के बराबर होता है।

खण्ड-द

प्रश्न संख्या 29 से 34 तक प्रत्येक प्रश्न 4 अंकों का है।

29. निम्न समीकरणों को ग्राफ द्वारा हल कीजिए तथा x - अक्ष व दोनों रेखाओं से बने हुये त्रिभुज के शीर्ष के निर्देशांक भी ज्ञात कीजिए।

$$2x-3y-4=0$$
, $x-y-1=0$.

30. निम्न बारंबारता बंटन का 'से अधिक प्रकार का' तोरण खींचिए तथा इससे माध्यिका भी ज्ञात कीजिए।

वर्ग अन्तराल	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
बारंबारता	2	12	2	4	3	4	3

31. सिद्ध कीजिए, यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिन्दुओं पर प्रतिच्छेद करने के लिये एक रेखा खींची जाय तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

या

सिद्ध कीजिए समकोण त्रिभुज में कर्ण का वर्ग शेष अन्य दो भुजाओं के वर्गों के योग के बराबर होती है।

- **32.** बहुपद $x^4 + x^3 9x^2 3x + 18$ के सभी शून्यक ज्ञात करो यदि इसके दो शून्यक $\sqrt{3}$ तथा $-\sqrt{3}$ हों।
- 33. सिद्ध कोजिए $\frac{\cos\theta \sin\theta + 1}{\cos\theta + \sin\theta 1} = \csc\theta + \cot\theta$.
- **34.** यदि $x = r \sin A \cos C$, $y = r \sin A \sin C$, $z = r \cos A$, तो सिद्ध कीजिए $r^2 = x^2 + y^2 + z^2$.

या

सिद्ध कोजिए $\sqrt{\frac{1+\cos A}{1-\cos A}}=\operatorname{cosec} A+\cot A.$